B.A.I.O.C.A.

Bare Attempt to Improve Offset Curve Algorithm

Giandomenico Rossi Nicola Fontana

April 16, 2013

Computer Aided Design (CAD) and related software is often based on cubic Bézier curves: the Postscript language and consecuentely the PDF file format are two widespread examples of such software. Defining an optimal algorithm for approximating a Bézier curve parallel to the original one at a specific distance (the so called "offset curve") is a big requirement in CAD drafting: it is heavily used while constructing derived entities (e.g., a fillet) or to express machining allowance.

This document describes an algorithm suitable for CAD purposes. In those cases, the starting and ending points of the offset curve **must** have coordinates and slopes coincident with the perfect solution, so the continuity with previous and next offseted entity is preserved.

1 Mathematic

The generic formula for a cubic Bézier curve is

$$\vec{B}(t) = b_0(t)\vec{B}_0 + b_1(t)\vec{B}_1 + b_2(t)\vec{B}_2 + b_3(t)\vec{B}_3$$

where

$$\vec{B}_i \equiv (B_x^i, B_y^i) \in \mathbb{R}; \qquad i = 0, 1, 2, 3$$
$$b_i(t) \equiv {3 \choose i} t^i (1 - t)^{3 - i}.$$

Given in $\{t_i\}_{i=0}^n$ a set of values for t chosen in some manner with $t_0 = 0, t_n = 1$ and in R the required distance of the offset curve,

$$\vec{C}_{i} = \vec{B}(t_{i}) + R \left. \frac{\dot{B}_{y}, -\dot{B}_{x}}{\sqrt{\dot{B}_{x}^{2} + \dot{B}_{y}^{2}}} \right|_{t=t_{i}} \forall t_{i}$$
(1)

is the equation of the offset curve that has in $\{\vec{C}_i\}_{i=0}^n$ the set of its points and where $\dot{\vec{B}} \equiv (\dot{B}_x, \dot{B}_y) \equiv (\frac{d}{dt}B_x(t), \frac{d}{dt}B_y(t))$.

We must find the Bézier curve

$$\vec{Q}(t) = b_0(t)\vec{Q}_0 + b_1(t)\vec{Q}_1 + b_2(t)\vec{Q}_2 + b_3(t)\vec{Q}_3$$
(2)

where

$$\vec{Q}_i \equiv (Q_x^i, Q_y^i) \in \mathbb{R} \qquad i = 0, 1, 2, 3$$

which best fits (1) within the needed constraints, that is:

1.
$$\vec{Q}(0) = \vec{C}_0$$
 and $\vec{Q}(1) = \vec{C}_n$ (interpolation);

2.
$$\dot{\vec{Q}}(0) = \dot{\vec{B}}(0)$$
 and $\dot{\vec{Q}}(1) = \dot{\vec{B}}(1)$ (tangents), where $\dot{\vec{Q}} \equiv \frac{d}{dt}\vec{Q}(t)$.

Condition 1 implies that $Q_0 = C_1$ and $Q_3 = C_n$.

Condition 2 implies that $\dot{\vec{Q}}_0 = \dot{\vec{B}}_0$ and $\dot{\vec{Q}}_3 = \dot{\vec{B}}_3$. Imposing by convention

$$\vec{P}_i = \vec{B}_{i+1} - \vec{B}_i; \qquad i = 0, 1, 2;$$
 (3)

we can calculate $\dot{\vec{B}}_0$ and $\dot{\vec{B}}_3$ directly from the hodograph of $\vec{B}(t)$:

$$\dot{\vec{B}}(t) = 3 \left[(1-t)\vec{P}_0 + 2t(1-t)\vec{P}_1 + t\vec{P}_2 \right];$$

$$\dot{\vec{B}}(0) = 3\vec{P}_0 \equiv \dot{\vec{B}}_0 = \dot{\vec{Q}}_0;$$

$$\dot{\vec{B}}(1) = 3\vec{P}_2 \equiv \dot{\vec{B}}_3 = \dot{\vec{Q}}_3.$$

Knowing that one of the properties of a Bézier curve is the start of the curve is tangent to the first section of the control polygon and the end is tangent to the last section, condition 2 is hence equivalent to:

$$\vec{Q}_{1} = \vec{Q}_{0} + \frac{r}{3}\dot{\vec{Q}}_{0} = \vec{Q}_{0} + r\vec{P}_{0}; \qquad r, s \in \mathbb{R}$$

$$\vec{Q}_{2} = \vec{Q}_{3} + \frac{s}{3}\dot{\vec{Q}}_{3} = \vec{Q}_{3} + s\vec{P}_{2}.$$
(4)

Substituting (4) in (2) we get

$$\vec{Q}(t) = b_0(t)\vec{Q}_0 + b_1(t)\vec{Q}_0 + b_1(t)r\vec{P}_0 + b_2(t)\vec{Q}_3 + b_2(t)s\vec{P}_2 + b_3(t)\vec{Q}_3.$$

Determine the value of r and s that minimizes the quantity $\phi = \sum \left[\vec{C}_i - \vec{Q}(t_i) \right]^2$, equivalent to solve the system

$$\begin{cases} \frac{\delta\phi}{\delta r} = 0; \\ \frac{\delta\phi}{\delta s} = 0. \end{cases}$$

Now, given the shortcuts¹ $\sum \equiv \sum_{i=1}^{n-1}$ and $b_j \equiv b_j(t_i)$, we can write ϕ as

$$\phi(r,s) = \sum \left[\vec{C}_i - b_0 \vec{Q}_0 - b_1 \vec{Q}_0 - rb_1 \vec{P}_0 - b_2 \vec{Q}_3 - sb_2 \vec{P}_2 - b_3 \vec{Q}_3 \right]^2;$$

that, applied to the previous system, bring us to the following linear system

$$\begin{cases} \sum \left(\vec{C}_i - b_0 \vec{Q}_0 - b_1 \vec{Q}_0 - r b_1 \vec{P}_0 - b_2 \vec{Q}_3 - s b_2 \vec{P}_2 - b_3 \vec{Q}_3 \right) \left(-2b_1 \vec{P}_0 \right) &= 0; \\ \sum \left(\vec{C}_i - b_0 \vec{Q}_0 - b_1 \vec{Q}_0 - r b_1 \vec{P}_0 - b_2 \vec{Q}_3 - s b_2 \vec{P}_2 - b_3 \vec{Q}_3 \right) \left(-2b_2 \vec{P}_2 \right) &= 0; \end{cases}$$

from which we get

$$\begin{cases} \sum \begin{pmatrix} b_1 \langle \vec{C}_i, \vec{P}_0 \rangle - b_0 b_1 \langle \vec{Q}_0, \vec{P}_0 \rangle - b_1 b_1 \langle \vec{Q}_0, \vec{P}_0 \rangle - r b_1 b_1 \langle \vec{P}_0, \vec{P}_0 \rangle \\ -b_1 b_2 \langle \vec{Q}_3, \vec{P}_0 \rangle - s b_1 b_2 \langle \vec{P}_2, \vec{P}_0 \rangle - b_1 b_3 \langle \vec{Q}_3, \vec{P}_0 \rangle \end{pmatrix} &= 0; \\ \sum \begin{pmatrix} b_2 \langle \vec{C}_i, \vec{P}_2 \rangle - b_0 b_2 \langle \vec{Q}_0, \vec{P}_2 \rangle - b_1 b_2 \langle \vec{Q}_0, \vec{P}_2 \rangle - r b_1 b_2 \langle \vec{P}_0, \vec{P}_2 \rangle \\ -b_2 b_2 \langle \vec{Q}_3, \vec{P}_2 \rangle - s b_2 b_2 \langle \vec{P}_2, \vec{P}_2 \rangle - b_2 b_3 \langle \vec{Q}_3, \vec{P}_2 \rangle \end{pmatrix} &= 0. \end{cases}$$

Given the additional conventions

$$D_0 \equiv \sum b_1 \langle \vec{C}_i, \vec{P}_0 \rangle;$$

$$D_2 \equiv \sum b_2 \langle \vec{C}_i, \vec{P}_2 \rangle;$$

$$E_{jk} \equiv \sum b_j b_k;$$
(5)

we can substitute to get

$$\begin{cases} D_{0} - E_{01} \langle \vec{Q}_{0}, \vec{P}_{0} \rangle - E_{11} \langle \vec{Q}_{0}, \vec{P}_{0} \rangle - r E_{11} \langle \vec{P}_{0}, \vec{P}_{0} \rangle - E_{12} \langle \vec{Q}_{3}, \vec{P}_{0} \rangle \\ -s E_{12} \langle \vec{P}_{2}, \vec{P}_{0} \rangle - E_{13} \langle \vec{Q}_{3}, \vec{P}_{0} \rangle = 0; \\ D_{2} - E_{02} \langle \vec{Q}_{0}, \vec{P}_{2} \rangle - E_{12} \langle \vec{Q}_{0}, \vec{P}_{2} \rangle - r E_{12} \langle \vec{P}_{0}, \vec{P}_{2} \rangle - E_{22} \langle \vec{Q}_{3}, \vec{P}_{2} \rangle \\ -s E_{22} \langle \vec{P}_{2}, \vec{P}_{2} \rangle - E_{23} \langle \vec{Q}_{3}, \vec{P}_{2} \rangle = 0; \end{cases}$$

and derive the following known terms

$$A_{1} = D_{0} - \langle \vec{Q}_{0}, \vec{P}_{0} \rangle (E_{01} + E_{11}) - \langle \vec{Q}_{3}, \vec{P}_{0} \rangle (E_{12} + E_{13});$$

$$A_{2} = D_{2} - \langle \vec{Q}_{0}, \vec{P}_{2} \rangle (E_{02} + E_{12}) - \langle \vec{Q}_{3}, \vec{P}_{2} \rangle (E_{22} + E_{23});$$

$$A_{3} = \langle \vec{P}_{0}, \vec{P}_{0} \rangle E_{11};$$

$$A_{4} = \langle \vec{P}_{0}, \vec{P}_{2} \rangle E_{12};$$

$$A_{5} = \langle \vec{P}_{2}, \vec{P}_{2} \rangle E_{22}.$$

$$(6)$$

¹Either C_0 and C_n are not considered because they have been already used as Q_0 and Q_3 by the interpolation constraint.

The system is hence reduced to

$$\begin{cases} rA_3 + sA_4 &= A_1; \\ rA_4 + sA_5 &= A_2; \end{cases}$$

from which we can calculate r and s

$$r = \frac{A_1 A_5 - A_4 A_2}{A_3 A_5 - A_4 A_4};$$

$$s = \frac{A_3 A_2 - A_1 A_4}{A_3 A_5 - A_4 A_4}.$$
(7)

2 Algorithm

- 1. Select $\{t_i\}_{i=0}^n$ as shown in section 3;
- 2. compute $\{\vec{C}_i\}_{i=0}^n$ with (1): $\vec{Q}_0 = C_0$ and $\vec{Q}_3 = C_n$;
- 3. calculate \vec{P}_0 and \vec{P}_2 with (3);
- 4. calculate D_0 , D_2 , E_{01} , E_{02} , E_{11} , E_{12} , E_{13} , E_{22} and E_{23} with (5);
- 5. calculate A_1 , A_2 , A_3 , A_4 and A_5 with (6);
- 6. calculate r and s with (7);
- 7. get \vec{Q}_1 and \vec{Q}_2 from (4).

 \vec{Q}_0 and \vec{Q}_3 are respectively the starting and ending points of the offset Bézier curve while \vec{Q}_1 and \vec{Q}_2 are its control points.

3 Choosing t_i

To select the $\{t_i\}_{i=0}^n$ set of values for t needed by the offsetting algorithm, we can use different methods. Here are some basic ones: no further research is performed to check the quality of the results.

3.1 Method 1: too lazy to think

The most obvious method is to directly use evenly spaced time values:

$$t_i = \frac{i}{n}$$
.

3.2 Method 2: squared distances

Let's select some $\{\vec{F}_i\}_{i=0}^n$ points on $\vec{B}(t)$, for instance by resolving the t values got from the lazy method. The following formula will partition the Bézier curve proportionally to their squared distances:

$$t_0 = 0;$$
 $f = \sum_{i=1}^{n} (\vec{F}_i - \vec{F}_{i-1})^2$ $t_i = t_{i-1} + \frac{(\vec{F}_i - \vec{F}_{i-1})^2}{f}.$

3.3 Method 3: distances

A variant of the previous method that uses distances instead of squared distances. This is computationally more intensive because the norm of a vector $\|\vec{F}\| \equiv \sqrt{F_x^2 + F_y^2}$ requires a square root.

$$t_0 = 0;$$

$$f = \sum_{i=1}^{n} \|\vec{F}_i - \vec{F}_{i-1}\|$$

$$t_i = t_{i-1} + \frac{\|\vec{F}_i - \vec{F}_{i-1}\|}{f}.$$