
B.A.I.O.C.A.
Bare Attempt to Improve Offset Curve Algorithm

Giandomenico Rossi Nicola Fontana

April 16, 2013

Computer Aided Design (CAD) and related software is often based on
cubic Bézier curves: the Postscript language and consecuentely the PDF file
format are two widespread examples of such software. Defining an optimal
algorithm for approximating a Bézier curve parallel to the original one at a
specific distance (the so called “offset curve”) is a big requirement in CAD
drafting: it is heavily used while constructing derived entities (e.g., a fillet)
or to express machining allowance.

This document describes an algorithm suitable for CAD purposes. In
those cases, the starting and ending points of the offset curve must have
coordinates and slopes coincident with the perfect solution, so the continuity
with previous and next offseted entity is preserved.

1 Mathematic

The generic formula for a cubic Bézier curve is

~B(t) = b0(t) ~B0 + b1(t) ~B1 + b2(t) ~B2 + b3(t) ~B3

where
~Bi ≡ (Bi

x, B
i
y) ∈ R;

bi(t) ≡
(
3

i

)
ti(1− t)3−i.

i = 0, 1, 2, 3

Given in {ti}ni=0 a set of values for t chosen in some manner with t0 = 0, tn = 1 and in
R the required distance of the offset curve,

~Ci = ~B(ti) +R
Ḃy,−Ḃx√
Ḃ2

x + Ḃ2
y

∣∣∣∣∣∣
t=ti

∀ti (1)

1



is the equation of the offset curve that has in {~Ci}ni=0 the set of its points and where
~̇B ≡ (Ḃx, Ḃy) ≡

(
d
dtBx(t),

d
dtBy(t)

)
.

We must find the Bézier curve

~Q(t) = b0(t) ~Q0 + b1(t) ~Q1 + b2(t) ~Q2 + b3(t) ~Q3 (2)

where
~Qi ≡ (Qi

x, Q
i
y) ∈ R i = 0, 1, 2, 3

which best fits (1) within the needed constraints, that is:

1. ~Q(0) = ~C0 and ~Q(1) = ~Cn (interpolation);

2. ~̇Q(0) = ~̇B(0) and ~̇Q(1) = ~̇B(1) (tangents), where ~̇Q ≡ d
dt
~Q(t).

Condition 1 implies that Q0 = C1 and Q3 = Cn.

Condition 2 implies that ~̇Q0 = ~̇B0 and ~̇Q3 = ~̇B3. Imposing by convention

~Pi = ~Bi+1 − ~Bi; i = 0, 1, 2; (3)

we can calculate ~̇B0 and ~̇B3 directly from the hodograph of ~B(t):

~̇B(t) = 3
[
(1− t)~P0 + 2t(1− t)~P1 + t ~P2

]
;

~̇B(0) = 3~P0 ≡ ~̇B0 = ~̇Q0;

~̇B(1) = 3~P2 ≡ ~̇B3 = ~̇Q3.

Knowing that one of the properties of a Bézier curve is the start of the curve is tangent
to the first section of the control polygon and the end is tangent to the last section,
condition 2 is hence equivalent to:

~Q1 = ~Q0 +
r

3
~̇Q0 = ~Q0 + r ~P0;

~Q2 = ~Q3 +
s

3
~̇Q3 = ~Q3 + s ~P2.

r, s ∈ R (4)

Substituting (4) in (2) we get

~Q(t) = b0(t) ~Q0 + b1(t) ~Q0 + b1(t)r ~P0 + b2(t) ~Q3 + b2(t)s ~P2 + b3(t) ~Q3.

Determine the value of r and s that minimizes the quantity φ =
∑[

~Ci − ~Q(ti)
]2

, equiv-
alent to solve the system 

δφ

δr
= 0;

δφ

δs
= 0.

2



Now, given the shortcuts1 ∑ ≡
∑n−1

i=1 and bj ≡ bj(ti), we can write φ as

φ(r, s) =
∑[

~Ci − b0 ~Q0 − b1 ~Q0 − rb1 ~P0 − b2 ~Q3 − sb2 ~P2 − b3 ~Q3

]2
;

that, applied to the previous system, bring us to the following linear system
∑(

~Ci − b0 ~Q0 − b1 ~Q0 − rb1 ~P0 − b2 ~Q3 − sb2 ~P2 − b3 ~Q3

)(
−2b1 ~P0

)
= 0;∑(

~Ci − b0 ~Q0 − b1 ~Q0 − rb1 ~P0 − b2 ~Q3 − sb2 ~P2 − b3 ~Q3

)(
−2b2 ~P2

)
= 0;

from which we get
∑(

b1〈~Ci, ~P0〉 − b0b1〈 ~Q0, ~P0〉 − b1b1〈 ~Q0, ~P0〉 − rb1b1〈~P0, ~P0〉
−b1b2〈 ~Q3, ~P0〉 − sb1b2〈~P2, ~P0〉 − b1b3〈 ~Q3, ~P0〉

)
= 0;

∑(
b2〈~Ci, ~P2〉 − b0b2〈 ~Q0, ~P2〉 − b1b2〈 ~Q0, ~P2〉 − rb1b2〈~P0, ~P2〉

−b2b2〈 ~Q3, ~P2〉 − sb2b2〈~P2, ~P2〉 − b2b3〈 ~Q3, ~P2〉

)
= 0.

Given the additional conventions

D0 ≡
∑

b1〈~Ci, ~P0〉;

D2 ≡
∑

b2〈~Ci, ~P2〉;

Ejk ≡
∑

bjbk;

(5)

we can substitute to get
D0 − E01〈 ~Q0, ~P0〉 − E11〈 ~Q0, ~P0〉 − rE11〈~P0, ~P0〉 − E12〈 ~Q3, ~P0〉

−sE12〈~P2, ~P0〉 − E13〈 ~Q3, ~P0〉 = 0;

D2 − E02〈 ~Q0, ~P2〉 − E12〈 ~Q0, ~P2〉 − rE12〈~P0, ~P2〉 − E22〈 ~Q3, ~P2〉
−sE22〈~P2, ~P2〉 − E23〈 ~Q3, ~P2〉 = 0;

and derive the following known terms

A1 = D0 − 〈 ~Q0, ~P0〉(E01 + E11)− 〈 ~Q3, ~P0〉(E12 + E13);

A2 = D2 − 〈 ~Q0, ~P2〉(E02 + E12)− 〈 ~Q3, ~P2〉(E22 + E23);

A3 = 〈~P0, ~P0〉E11;

A4 = 〈~P0, ~P2〉E12;

A5 = 〈~P2, ~P2〉E22.

(6)

1Either C0 and Cn are not considered because they have been already used as Q0 and Q3 by the
interpolation constraint.

3



The system is hence reduced to {
rA3 + sA4 = A1;

rA4 + sA5 = A2;

from which we can calculate r and s

r =
A1A5 −A4A2

A3A5 −A4A4
;

s =
A3A2 −A1A4

A3A5 −A4A4
.

(7)

2 Algorithm

1. Select {ti}ni=0 as shown in section 3;

2. compute {~Ci}ni=0 with (1): ~Q0 = C0 and ~Q3 = Cn;

3. calculate ~P0 and ~P2 with (3);

4. calculate D0, D2, E01, E02, E11, E12, E13, E22 and E23 with (5);

5. calculate A1, A2, A3, A4 and A5 with (6);

6. calculate r and s with (7);

7. get ~Q1 and ~Q2 from (4).

~Q0 and ~Q3 are respectively the starting and ending points of the offset Bézier curve
while ~Q1 and ~Q2 are its control points.

4



3 Choosing ti

To select the {ti}ni=0 set of values for t needed by the offsetting algorithm, we can use
different methods. Here are some basic ones: no further research is performed to check
the quality of the results.

3.1 Method 1: too lazy to think

The most obvious method is to directly use evenly spaced time values:

ti =
i

n
.

3.2 Method 2: squared distances

Let’s select some {~Fi}ni=0 points on ~B(t), for instance by resolving the t values got from
the lazy method. The following formula will partition the Bézier curve proportionally
to their squared distances:

t0 = 0;

ti = ti−1 +

(
~Fi − ~Fi−1

)2
f

.

f =

n∑
i=1

(
~Fi − ~Fi−1

)2

3.3 Method 3: distances

A variant of the previous method that uses distances instead of squared distances. This is
computationally more intensive because the norm of a vector ‖~F‖ ≡

√
F 2
x + F 2

y requires
a square root.

t0 = 0;

ti = ti−1 +
‖~Fi − ~Fi−1‖

f
.

f =
n∑

i=1

‖~Fi − ~Fi−1‖

5


